CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-15-007 ; CERN-EP-2017-307
Measurement of the $\mathrm{Z}/\gamma^{*} \to \tau\tau$ cross section in pp collisions at $\sqrt{s} = $ 13 TeV and validation of $\tau$ lepton analysis techniques
Eur. Phys. J. C 78 (2018) 708
Abstract: A measurement is presented of the $\mathrm{Z}/\gamma^{*} \to \tau\tau$ cross section in pp collisions at $\sqrt{s} = $ 13 TeV, using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb$^{-1}$. The product of the inclusive cross section and branching fraction is measured to be $\sigma(\mathrm{pp} \to \mathrm{Z}/\gamma^{*}\text{+X}) \, \mathcal{B}(\mathrm{Z}/\gamma^{*} \to \tau\tau) = $ 1848 $\pm$ 12 (stat) $\pm$ 67 (syst+lumi) pb, in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of $\tau$ lepton production. The measurement also provides the reconstruction efficiency and energy scale for $\tau$ decays to hadrons+$\nu_{\tau}$ final states, determined with respective relative uncertainties of 2.2% and 0.9%.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
(Left) Construction of the projections $ {P_{\zeta}^{ \textrm {miss}}} $ and $ {P_{\zeta}^{ \textrm {vis}}} $, and (right) the distribution in the observable $ {P_{\zeta}^{ \textrm {miss}}} - 0.85 {P_{\zeta}^{ \textrm {vis}}} $ for events selected in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, before imposing the condition $ {P_{\zeta}^{ \textrm {miss}}} - 0.85 {P_{\zeta}^{ \textrm {vis}}} > -20 GeV $. Also indicated is the separation of the background into its main components. The symbols $ {{\vec p}_{\mathrm {T}}} ^{\ {{\nu}}({\mathrm {e}})}$ and $ {{\vec p}_{\mathrm {T}}} ^{\ {{\nu}}({{\mu}})}$ refer to the vectorial sum of transverse momenta of the two neutrinos produced in each of the decays $ {\tau}\to {\mathrm {e}} {{\nu}} {{\nu}}$ and $ {\tau}\to {{\mu}} {{\nu}} {{\nu}}$, respectively.

png pdf
Figure 1-a:
Construction of the projections $ {P_{\zeta}^{ \textrm {miss}}} $ and $ {P_{\zeta}^{ \textrm {vis}}} $. The symbols $ {{\vec p}_{\mathrm {T}}} ^{\ {{\nu}}({\mathrm {e}})}$ and $ {{\vec p}_{\mathrm {T}}} ^{\ {{\nu}}({{\mu}})}$ refer to the vectorial sum of transverse momenta of the two neutrinos produced in each of the decays $ {\tau}\to {\mathrm {e}} {{\nu}} {{\nu}}$ and $ {\tau}\to {{\mu}} {{\nu}} {{\nu}}$, respectively.

png pdf
Figure 1-b:
Distribution in the observable $ {P_{\zeta}^{ \textrm {miss}}} - 0.85 {P_{\zeta}^{ \textrm {vis}}} $ for events selected in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, before imposing the condition $ {P_{\zeta}^{ \textrm {miss}}} - 0.85 {P_{\zeta}^{ \textrm {vis}}} > -20 GeV $. Also indicated is the separation of the background into its main components.

png pdf
Figure 2:
Probabilities for gluon and quark jets of different flavour in simulated multijet events to be misidentified as $ {{\tau} _\mathrm {h}} $, as a function of jet $ {p_{\mathrm {T}}} $, for (left) jets passing $ {p_{\mathrm {T}}} > $ 20 GeV and $ | \eta | < $ 2.3, and (right) for jets passing in addition the minimal $ {{\tau} _\mathrm {h}} $ candidate selection criteria discussed in the text.

png pdf
Figure 2-a:
Probabilities for gluon and quark jets of different flavour in simulated multijet events to be misidentified as $ {{\tau} _\mathrm {h}} $, as a function of jet $ {p_{\mathrm {T}}} $, for jets passing $ {p_{\mathrm {T}}} > $ 20 GeV and $ | \eta | < $ 2.3.

png pdf
Figure 2-b:
Probabilities for gluon and quark jets of different flavour in simulated multijet events to be misidentified as $ {{\tau} _\mathrm {h}} $, as a function of jet $ {p_{\mathrm {T}}} $, for jets passing in addition the minimal $ {{\tau} _\mathrm {h}} $ candidate selection criteria discussed in the text.

png pdf
Figure 3:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ (upper), $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ (center), and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (lower) channels, presented in bins of jet multiplicity and $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 3-a:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 3-b:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 3-c:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 3-d:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 3-e:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 3-f:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 4:
The $ {F_\textrm {F}}$ values measured in W+jets events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ (upper) and $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ (center) channels and in $ {\mathrm {t}} {\overline {\mathrm {t}}}$ events (lower), presented in bins of jet multiplicity and $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. A common $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR is used for the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ and $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channels. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 4-a:
The $ {F_\textrm {F}}$ values measured in W+jets events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel ,presented in bins of jet multiplicity for the 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. A common $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR is used. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 4-b:
The $ {F_\textrm {F}}$ values measured in W+jets events in

png pdf
Figure 4-c:
The $ {F_\textrm {F}}$ values measured in W+jets events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for the 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. A common $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR is used. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 4-d:
The $ {F_\textrm {F}}$ values measured in W+jets events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for the 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. A common $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR is used. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 4-e:
The $ {F_\textrm {F}}$ values measured in W+jets events in $ {\mathrm {t}} {\overline {\mathrm {t}}}$ events, presented in bins of jet multiplicity for the 1 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 4-f:
The $ {F_\textrm {F}}$ values measured in W+jets events in $ {\mathrm {t}} {\overline {\mathrm {t}}}$ events, presented in bins of jet multiplicity for the 1 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities.

png pdf
Figure 5:
Distributions in $m_{{\tau} {\tau}}$ for SS events containing (upper left) $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, (upper right) $ {{\mu}} {{\tau} _\mathrm {h}} $, and (lower) $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ pairs, compared to expected background contributions.

png pdf
Figure 5-a:
Distributions in $m_{{\tau} {\tau}}$ for SS events containing $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, pairs, compared to expected background contributions.

png pdf
Figure 5-b:
Distributions in $m_{{\tau} {\tau}}$ for SS events containing $ {{\mu}} {{\tau} _\mathrm {h}} $, pairs, compared to expected background contributions.

png pdf
Figure 5-c:
Distributions in $m_{{\tau} {\tau}}$ for SS events containing $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ pairs, compared to expected background contributions.

png pdf
Figure 6:
Distributions expected in $m_{{\tau} {\tau}}$ for $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events in the (left) $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, (center) $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, and (right) $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channels for the nominal value of the $ {{\tau} _\mathrm {h}} $ ES, and after implementing 3% systematic shift.

png pdf
Figure 6-a:
Distributions expected in $m_{{\tau} {\tau}}$ for $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel for the nominal value of the $ {{\tau} _\mathrm {h}} $ ES, and after implementing 3% systematic shift.

png pdf
Figure 6-b:
Distributions expected in $m_{{\tau} {\tau}}$ for $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel for the nominal value of the $ {{\tau} _\mathrm {h}} $ ES, and after implementing 3% systematic shift.

png pdf
Figure 6-c:
Distributions expected in $m_{{\tau} {\tau}}$ for $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel for the nominal value of the $ {{\tau} _\mathrm {h}} $ ES, and after implementing 3% systematic shift.

png pdf
Figure 7:
Distributions in $m_{{\tau} {\tau}}$ expected for the background arising from quark or gluon jets misidentified as $ {{\tau} _\mathrm {h}} $ in the (left) $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, (center) $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, and (right) $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channels, and the systematic uncertainty in the false-$ {{\tau} _\mathrm {h}} $ background estimate. The grey shaded band represents the quadratic sum of all systematic uncertainties related to the $ {F_\textrm {F}}$ method: uncertainties in the $ {F_\textrm {F}}$ measured in the multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR; uncertainties in the relative fractions of multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ backgrounds in the AR; and uncertainties in the non-closure corrections (described in Section 6.1.

png pdf
Figure 7-a:
Distributions in $m_{{\tau} {\tau}}$ expected for the background arising from quark or gluon jets misidentified as $ {{\tau} _\mathrm {h}} $ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, and the systematic uncertainty in the false-$ {{\tau} _\mathrm {h}} $ background estimate. The grey shaded band represents the quadratic sum of all systematic uncertainties related to the $ {F_\textrm {F}}$ method: uncertainties in the $ {F_\textrm {F}}$ measured in the multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR; uncertainties in the relative fractions of multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ backgrounds in the AR; and uncertainties in the non-closure corrections (described in Section 6.1.

png pdf
Figure 7-b:
Distributions in $m_{{\tau} {\tau}}$ expected for the background arising from quark or gluon jets misidentified as $ {{\tau} _\mathrm {h}} $ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, and the systematic uncertainty in the false-$ {{\tau} _\mathrm {h}} $ background estimate. The grey shaded band represents the quadratic sum of all systematic uncertainties related to the $ {F_\textrm {F}}$ method: uncertainties in the $ {F_\textrm {F}}$ measured in the multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR; uncertainties in the relative fractions of multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ backgrounds in the AR; and uncertainties in the non-closure corrections (described in Section 6.1.

png pdf
Figure 7-c:
Distributions in $m_{{\tau} {\tau}}$ expected for the background arising from quark or gluon jets misidentified as $ {{\tau} _\mathrm {h}} $ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, and the systematic uncertainty in the false-$ {{\tau} _\mathrm {h}} $ background estimate. The grey shaded band represents the quadratic sum of all systematic uncertainties related to the $ {F_\textrm {F}}$ method: uncertainties in the $ {F_\textrm {F}}$ measured in the multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR; uncertainties in the relative fractions of multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ backgrounds in the AR; and uncertainties in the non-closure corrections (described in Section 6.1.

png pdf
Figure 8:
Dependence of $-2 \ln\lambda \left (\xi \right)$ on the cross section $\xi $ for DY production of $ {\tau}$ pairs. The PLR is computed for the simultaneous ML fit to the observed $m_{{\tau} {\tau}}$ distributions in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $, and $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channels. The dashed, dash-dotted, and solid curves correspond to situations when just the statistical uncertainties are used in the fit, when the uncertainty in integrated luminosity is also included, and when all uncertainties are included in the fit. The values of nuisance parameters, corresponding to uncertainties that are ignored, are fixed at the values that yield the best fit to the data. The horizontal line represents the value of $-2 \ln\lambda \left (\xi \right)$ that is used to determine the 68% CI on $\xi $.

png pdf
Figure 9:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the (upper left) $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, (upper right) $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, and (lower) $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channels. Signal and background contributions are shown for values of nuisance parameters obtained in the ML fit to the data.

png pdf
Figure 9-a:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel. Signal and background contributions are shown for values of nuisance parameters obtained in the ML fit to the data.

png pdf
Figure 9-b:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel. Signal and background contributions are shown for values of nuisance parameters obtained in the ML fit to the data.

png pdf
Figure 9-c:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel. Signal and background contributions are shown for values of nuisance parameters obtained in the ML fit to the data.

png pdf
Figure 10:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the (left) $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ and (right) $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channels. Signal and background contributions are shown for the values of nuisance parameters obtained in the ML fit to the data.

png pdf
Figure 10-a:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel. Signal and background contributions are shown for the values of nuisance parameters obtained in the ML fit to the data.

png pdf
Figure 10-b:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel. Signal and background contributions are shown for the values of nuisance parameters obtained in the ML fit to the data.

png pdf
Figure 11:
The inclusive cross section $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ measured in individual channels, and in the combination of all final states, compared to the theoretical prediction [60].

png pdf
Figure 12:
Likelihood contours for the joint parameter estimation of (upper left) $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ and the $ {{\tau} _\mathrm {h}} $ ID efficiency, (upper right) $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ and $ {{\tau} _\mathrm {h}} $ ES, and (lower) the $ {{\tau} _\mathrm {h}} $ ES and the $ {{\tau} _\mathrm {h}} $ ID efficiency, at $68$ and $95%$ confidence level (CL). The values of the $ {{\tau} _\mathrm {h}} $ ID efficiency and of $ {{\tau} _\mathrm {h}} $ ES are quoted in terms of scale factors (SF) relative to their standard model, MC expectation.

png pdf
Figure 12-a:
Likelihood contours for the joint parameter estimation of $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ and the $ {{\tau} _\mathrm {h}} $ ID efficiency. The values of the $ {{\tau} _\mathrm {h}} $ ID efficiency are quoted in terms of a scale factor (SF) relative to the standard model, MC expectation.

png pdf
Figure 12-b:
Likelihood contours for the joint parameter estimation of $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ and $ {{\tau} _\mathrm {h}} $ ES. The values of $ {{\tau} _\mathrm {h}} $ ES are quoted in terms of a scale factor (SF) relative to the standard model, MC expectation.

png pdf
Figure 12-c:
Likelihood contours for the joint parameter estimation of the $ {{\tau} _\mathrm {h}} $ ES and the $ {{\tau} _\mathrm {h}} $ ID efficiency, at 68 and 95% confidence level (CL). The values of the $ {{\tau} _\mathrm {h}} $ ID efficiency and of $ {{\tau} _\mathrm {h}} $ ES are quoted in terms of scale factors (SF) relative to their standard model, MC expectation.

png pdf
Figure 13:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $.

png pdf
Figure 13-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 0-jet category.

png pdf
Figure 13-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 13-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet medium Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 13-d:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 14:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet.

png pdf
Figure 14-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 2-jet VBF category.

png pdf
Figure 14-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 1 b jet category.

png pdf
Figure 14-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 2 b jet category.

png pdf
Figure 15:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $.

png pdf
Figure 15-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 0-jet category.

png pdf
Figure 15-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 15-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet medium Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 15-d:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 16:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet.

png pdf
Figure 16-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 2-jet VBF jet category.

png pdf
Figure 16-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 1 b jet category.

png pdf
Figure 16-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 2 b jet category.

png pdf
Figure 17:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $.

png pdf
Figure 17-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 0-jet Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 17-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 17-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 1-jet medium Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 17-d:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 18:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet.

png pdf
Figure 18-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 2-jet VBF category.

png pdf
Figure 18-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 1 b jet category.

png pdf
Figure 18-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 2 b jet category.

png pdf
Figure 19:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $.

png pdf
Figure 19-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 0-jet category.

png pdf
Figure 19-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 19-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet medium Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 19-d:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 20:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet.

png pdf
Figure 20-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 2-jet VBF category.

png pdf
Figure 20-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 1 b jet category.

png pdf
Figure 20-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 2 b jet category.

png pdf
Figure 21:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $.

png pdf
Figure 21-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel, 0-jet category.

png pdf
Figure 21-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 21-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category.

png pdf
Figure 21-d:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $.

png pdf
Figure 22:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet.

png pdf
Figure 22-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: 2-jet VBF category.

png pdf
Figure 22-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: 1 b jet category.

png pdf
Figure 22-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: 2 b jet category.
Tables

png pdf
Table 1:
Expected number of background events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $, and $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channels in data, corresponding to an integrated luminosity of 2.3 fb$^{-1}$. Event yields and uncertainties are rounded to a precision of two significant digits in the uncertainty.

png pdf
Table 2:
Effect of experimental and theoretical uncertainties in the measurement of the $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ cross section. The sources of systematic uncertainty are specified in the leftmost column, and apply to the processes given in the second column. The relative changes in the acceptance $\mathcal {A}$ for the $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal, and in the yield from background processes that correspond to a one standard deviation change in a given source of uncertainty is given in the third column. The range in this column represents the range in signal acceptance or background yield across all decay channels and background processes. The impact that each change produces is quantified by its effect on the measured $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ cross section, given in the rightmost column.

png pdf
Table 3:
Yields expected in $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events and backgrounds in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $, and $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channels, obtained from the ML fit described in Section yyyyy. The yields and uncertainties are rounded to a precision of two significant digits in the uncertainty. The analysed data corresponds to an integrated luminosity of 2.3 fb$^{-1}$.

png pdf
Table 4:
Cross section $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ measured in individual final states.

png pdf
Table 5:
Event categories used to study the modelling of backgrounds. Similar categories have been used in previous $ {\textrm {H}} \to {\tau} {\tau}$ analyses at the LHC.
Summary
The cross section for inclusive Drell-Yan production of $\tau$ pairs has been measured using pp collisions recorded by the CMS experiment at $\sqrt{s} = $ 13 TeV at the LHC. The analysed data correspond to an integrated luminosity of 2.3 fb$^{-1}$. The signal yield was determined in a global fit to the mass distributions in five $\tau\tau$ decay channels: ${\tau_{\mathrm{e}}} {\tau_\mathrm{h}}$, ${\tau_{\mu}} {\tau_\mathrm{h}}$, ${\tau_\mathrm{h}}{\tau_\mathrm{h}}$, ${\tau_{\mathrm{e}}} {\tau_{\mu}} $, and ${\tau_{\mu}} {\tau_{\mu}} $. The measured cross section times branching fraction $\sigma({\mathrm{p}}{\mathrm{p}} \to \mathrm{Z}/\gamma^{*} \text{+X}) \, \mathcal{B}(\mathrm{Z}/\gamma^{*} \to \tau\tau) = $ 1848 $\pm$ 12 (stat) $\pm$ 57 (syst) $\pm$ 35 (lumi) pb is in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbation theory. As a byproduct of the global fit, the efficiency for reconstructing and identifying the decays of $\tau$ leptons to hadrons ($\tau \to \mbox{hadrons} + \nu_{\tau}$), as well as the ${\tau_\mathrm{h}}$ energy scale, have been determined. The results from data agree with Monte Carlo simulation within the uncertainties of the measurement, amounting to 2.2% relative uncertainty in the ${\tau_\mathrm{h}}$ identification efficiency, and 0.9% in the energy scale.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s} = $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
5 CMS Collaboration Search for a light charged Higgs boson in top quark decays in pp collisions at $ \sqrt{s} = $ 7 TeV JHEP 07 (2012) 143 CMS-HIG-11-019
1205.5736
6 ATLAS Collaboration Search for charged Higgs bosons decaying via $ \mathrm{H}^{\pm} \to \tau^{\pm}\nu $ in fully hadronic final states using pp collision data at $ \sqrt{s} = $ 8 TeV with the ATLAS detector JHEP 03 (2015) 088 1412.6663
7 CMS Collaboration Search for a charged Higgs boson in pp collisions at $ \sqrt{s} = $ 8 TeV JHEP 11 (2015) 018 CMS-HIG-14-023
1508.07774
8 CMS Collaboration A search for a doubly-charged Higgs boson in pp collisions at $ \sqrt{s} = $ 7 TeV EPJC 72 (2012) 2189 CMS-HIG-12-005
1207.2666
9 CMS Collaboration Search for neutral MSSM Higgs bosons decaying to $ \tau $ pairs in pp collisions at $ \sqrt{s} = $ 7 TeV PRL 106 (2011) 231801 CMS-HIG-10-002
1104.1619
10 ATLAS Collaboration Search for neutral MSSM Higgs bosons decaying to $ \tau^{+}\tau^{-} $ pairs in pp collisions at $ \sqrt{s} = $ 7 TeV with the ATLAS detector PLB 705 (2011) 174 1107.5003
11 CMS Collaboration Search for neutral Higgs bosons decaying to $ \tau $ pairs in pp collisions at $ \sqrt{s} = $ 7 TeV PLB 713 (2012) 68 CMS-HIG-11-029
1202.4083
12 CMS Collaboration Search for neutral MSSM Higgs bosons decaying to a pair of $ \tau $ leptons in pp collisions JHEP 10 (2014) 160 CMS-HIG-13-021
1408.3316
13 ATLAS Collaboration Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector JHEP 11 (2014) 056 1409.6064
14 CMS Collaboration Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $ \tau $ leptons in pp collisions at $ \sqrt{s} = $ 8 TeV JHEP 01 (2016) 079 CMS-HIG-14-019
1510.06534
15 CMS Collaboration Search for a low-mass pseudoscalar Higgs boson produced in association with a $ \mathrm{ b \bar{b} } $ pair in pp collisions at $ \sqrt{s} = $ 8 TeV PLB 758 (2016) 296 CMS-HIG-14-033
1511.03610
16 ATLAS Collaboration Search for Higgs bosons decaying to $ \textrm{a}\textrm{a} $ in the $ \mu\mu\tau\tau $ final state in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS experiment PRD 92 (2015) 052002 1505.01609
17 CMS Collaboration Observation of the Higgs boson decay to a pair of $ \tau $ leptons Submitted to PLB CMS-HIG-16-043
1708.00373
18 CMS Collaboration Search for lepton-flavour-violating decays of the Higgs boson PLB 749 (2015) 337 CMS-HIG-14-005
1502.07400
19 ATLAS Collaboration Search for lepton-flavour-violating $ \mathrm{H}iggs \to \mu\tau $ decays of the Higgs boson with the ATLAS detector JHEP 11 (2015) 211 1508.03372
20 ATLAS Collaboration Search for a heavy neutral particle decaying to $ \mathrm{e}\mu $, $ \mathrm{e}\tau $, or $ \mu\tau $ in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS Detector PRL 115 (2015) 031801 1503.04430
21 CMS Collaboration Search for physics beyond the standard model in events with $ \tau $ leptons, jets, and large transverse momentum imbalance in pp collisions at $ \sqrt{s} = $ 7 TeV EPJC 73 (2013) 2493 CMS-SUS-12-004
1301.3792
22 CMS Collaboration Search for anomalous production of events with three or more leptons in pp collisions at $ \sqrt{s} = $ 8 TeV PRD 90 (2014) 032006 CMS-SUS-13-002
1404.5801
23 CMS Collaboration Search for top squarks in $ R $-parity-violating supersymmetry using three or more leptons and b-tagged jets PRL 111 (2013) 221801 CMS-SUS-13-003
1306.6643
24 ATLAS Collaboration Search for a heavy narrow resonance decaying to $ \mathrm{e}\mu $, $ \mathrm{e}\tau $, or $ \mu\tau $ with the ATLAS detector in $ \sqrt{s} = $ 7 TeV pp collisions at the LHC PLB 723 (2013) 15 1212.1272
25 ATLAS Collaboration Search for supersymmetry in events with large missing transverse momentum, jets, and at least one $ \tau $ lepton in 20 fb$^{-1} $ of $ \sqrt{s} = $ 8 TeV pp collision data with the ATLAS detector JHEP 09 (2014) 103 1407.0603
26 ATLAS Collaboration Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector JHEP 10 (2014) 96 1407.0350
27 ATLAS Collaboration Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in $ \sqrt{s} = $ 8 TeV pp collisions with the ATLAS detector JHEP 04 (2014) 169 1402.7029
28 ATLAS Collaboration Search for direct scalar top pair production in final states with two $ \tau $ leptons in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector EPJC 76 (2016) 81 1509.04976
29 CMS Collaboration Search for pair production of third-generation leptoquarks and top squarks in pp collisions at $ \sqrt{s} = $ 7 TeV PRL 110 (2013) 081801 CMS-EXO-12-002
1210.5629
30 CMS Collaboration Search for third-generation scalar leptoquarks in the $ \mathrm{t}\tau $ channel in pp collisions at $ \sqrt{s} = $ 8 TeV JHEP 07 (2015) 042 CMS-EXO-14-008
1503.09049
31 CMS Collaboration A search for Higgs boson pair production in the $ \mathrm{b}\mathrm{b}\tau\tau $ final state in pp collisions at $ \sqrt{s} = $ 8 TeV PRD 96 (2017), no. 7, 072004 CMS-HIG-15-013
1707.00350
32 ATLAS Collaboration Searches for Higgs boson pair production in the $ \mathrm{h}\mathrm{h} \to \mathrm{b}\mathrm{b}\tau\tau $, $ \gamma\gamma \mathrm{W}\mathrm{W}^{*} $, $ \gamma\gamma\mathrm{b}\mathrm{b} $, $ \mathrm{b}\mathrm{b}\mathrm{b}\mathrm{b} $ channels with the ATLAS detector PRD 92 (2015) 092004 1509.04670
33 CMS Collaboration Search for high mass resonances decaying into $ \tau $ lepton pairs in pp collisions at $ \sqrt{s} = $ 7 TeV PLB 716 (2012) 82 CMS-EXO-11-031
1206.1725
34 CMS Collaboration Search for $ \mathrm{W} $' decaying to $ \tau $ lepton and neutrino in pp collisions at $ \sqrt{s} = $ 8 TeV PLB 755 (2016) 196 CMS-EXO-12-011
1508.04308
35 ATLAS Collaboration A search for high-mass resonances decaying to $ \tau^{+}\tau^{-} $ in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector JHEP 07 (2015) 157 1502.07177
36 S. D. Drell and T. M. Yan Massive lepton pair production in hadron-hadron collisions at high energies PRL 25 (1970) 316
37 CMS Collaboration Reconstruction and identification of $ \tau $ lepton decays to hadrons and $ {\mathrm{n}}ut $ at CMS JINST 11 (2016) P01019 CMS-TAU-14-001
1510.07488
38 CMS Collaboration Measurement of the inclusive $ \mathrm{Z} $ cross section via decays to $ \tau $ pairs in pp collisions at $ \sqrt{s} = $ 7 TeV JHEP 08 (2011) 117 CMS-EWK-10-013
1104.1617
39 ATLAS Collaboration Measurement of the $ \mathrm{Z} \to \tau\tau $ cross section with the ATLAS Detector PRD 84 (2011) 112006 1108.2016
40 CDF Collaboration Measurement of $ \sigma({\mathrm{p}}\mathrm{\bar{p}} \to \mathrm{Z}) \times {\cal B}(\mathrm{Z} \to \tau\tau) $ in $ {\mathrm{p}}\mathrm{\bar{p}} $ collisions at $ \sqrt{s} = $ 1.96 TeV PRD 75 (2007) 092004
41 D0 Collaboration First measurement of $ \sigma({\mathrm{p}}\mathrm{\bar{p}} \to \mathrm{Z}) \times {\cal B}(\mathrm{Z} \to \tau\tau) $ at $ \sqrt{s} = $ 1.96 TeV PRD 71 (2005) 072004 hep-ex/0412020
42 D0 Collaboration Measurement of $ \sigma({\mathrm{p}}\mathrm{\bar{p}} \to \mathrm{Z} + X) \times {\cal B}(\mathrm{Z} \to \tau^{+}\tau^{-}) $ at $ \sqrt{s} = $ 1.96 TeV PLB 670 (2009) 292 0808.1306
43 CMS Collaboration Evidence for the 125 GeV Higgs boson decaying to a pair of $ \tau $ leptons JHEP 05 (2014) 104 CMS-HIG-13-004
1401.5041
44 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
45 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
46 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
47 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
48 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
49 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
50 S. Frixione, P. Nason, and G. Ridolfi A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
51 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG: $ s $- and $ t $-channel contributions JHEP 09 (2009) 111 0907.4076
52 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
53 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
54 NNPDF Collaboration Parton distributions with QED corrections NPB 877 (2013) 290 1308.0598
55 NNPDF Collaboration Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
56 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
57 T. Sjostrand, S. Mrenna, and P. Z. Skands A brief introduction to PYTHIA 8.1 CPC 178 (2008) 852 0710.3820
58 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
59 P. Skands, S. Carrazza, and J. Rojo Tuning PYTHIA 8.1: the Monash 2013 tune EPJC 74 (2014) 3024 1404.5630
60 Y. Li and F. Petriello Combining QCD and electroweak corrections to dilepton production in FEWZ PRD 86 (2012) 094034 1208.5967
61 M. Czakon and A. Mitov Top++: A program for the calculation of the top-pair cross section at hadron colliders CPC 185 (2014) 2930 1112.5675
62 CMS Collaboration Measurement of differential top-quark pair production cross sections in pp colisions at $ \sqrt{s} = $ 7 TeV EPJC 73 (2013) 2339 CMS-TOP-11-013
1211.2220
63 CMS Collaboration Measurement of the differential cross section for top quark pair production in pp collisions at $ \sqrt{s} = $ 8 TeV EPJC 75 (2015) 542 CMS-TOP-12-028
1505.04480
64 P. Kant et al. HATHOR for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions CPC 191 (2015) 74 1406.4403
65 M. Aliev et al. HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR CPC 182 (2011) 1034 1007.1327
66 N. Kidonakis Two-loop soft anomalous dimensions for single top quark associated production with a $ \mathrm{W}^{-} $ or $ \mathrm{H}iggs^{-} $ PRD 82 (2010) 054018 1005.4451
67 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
68 GEANT4 Collaboration GEANT4---a simulation toolkit NIMA 506 (2003) 250
69 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
70 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in pp collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
71 H. Voss, A. Hocker, J. Stelzer, and F. Tegenfeldt TMVA, the toolkit for multivariate data analysis with ROOT in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), p. 40 2007 physics/0703039
72 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
73 E. Chabanat and N. Estre Deterministic annealing for vertex finding at CMS in Computing in high energy physics and nuclear physics. Proceedings, Conference, CHEP'04, Interlaken, Switzerland, September 27-October 1, 2004, p. 2872005
74 W. Waltenberger, R. Fruhwirth, and P. Vanlaer Adaptive vertex fitting JPG 34 (2007) N343
75 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
76 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
77 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons in their decays to hadrons and $ {\mathrm{n}}ut $ in LHC Run 2 CMS-PAS-TAU-16-002 CMS-PAS-TAU-16-002
78 CMS Collaboration Jet performance in pp collisions at $ \sqrt{s} = $ 7 TeV CDS
79 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
80 M. Cacciari, G. P. Salam, and G. Soyez The catchment area of jets JHEP 04 (2008) 005 0802.1188
81 M. Cacciari and G. P. Salam Pileup subtraction using jet areas PLB 659 (2008) 119 0707.1378
82 CMS Collaboration Identification of $ \mathrm{b} $ quark jets with the CMS experiment JINST 8 (2013) P04013 CMS-BTV-12-001
1211.4462
83 CMS Collaboration Performance of the CMS missing transverse momentum reconstruction in pp data at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P02006 CMS-JME-13-003
1411.0511
84 L. Bianchini, J. Conway, E. K. Friis, and C. Veelken Reconstruction of the Higgs mass in $ \mathrm{H}iggs \to \tau\tau $ events by dynamical likelihood techniques J. Phys. Conf. Ser. 513 (2014) 022035
85 CMS Collaboration Missing transverse energy performance of the CMS detector JINST 6 (2011) P09001 CMS-JME-10-009
1106.5048
86 CDF Collaboration Search for neutral MSSM Higgs bosons decaying to $ \tau $ pairs in $ {\mathrm{p}}\mathrm{\bar{p}} $ collisions at $ \sqrt{s} = $ 1.96 TeV PRL 96 (2006) 011802 hep-ex/0508051
87 CMS Collaboration Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to $ \mathrm{Z}\mathrm{h} $, in the final states with $ \mathrm{h} \to \tau\tau $ PLB 755 (2016) 217 CMS-HIG-14-034
1510.01181
88 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
89 CMS Collaboration Measurements of inclusive $ \mathrm{W} $ and $ \mathrm{Z} $ cross sections in pp collisions at $ \sqrt{s} = $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
90 CMS Collaboration Performance of missing energy reconstruction in 13 $ TeV {\mathrm{p}}{\mathrm{p}} $ collision data using the CMS detector CMS-PAS-JME-16-004 CMS-PAS-JME-16-004
91 CMS Collaboration CMS luminosity measurement for the 2015 data-taking period CMS-PAS-LUM-15-001 CMS-PAS-LUM-15-001
92 M. Cacciari et al. The $\mathrm{ t \bar{t} } $ cross-section at 1.8 TeV and 1.96$ TeV: $ a study of the systematics due to parton densities and scale dependence JHEP 04 (2004) 068 hep-ph/0303085
93 S. Catani, D. de Florian, M. Grazzini, and P. Nason Soft gluon resummation for Higgs boson production at hadron colliders JHEP 07 (2003) 028 hep-ph/0306211
94 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
95 ATLAS and CMS Collaborations and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 CMS-NOTE-2011-005
96 CMS Collaboration Combined results of searches for the standard model Higgs boson in pp collisions at $ \sqrt{s} = $ 7 TeV PLB 710 (2012) 26 CMS-HIG-11-032
1202.1488
97 J. S. Conway Incorporating nuisance parameters in likelihoods for multisource spectra 1103.0354
98 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
99 S. Jadach, Z. W\cas, R. Decker, and J. H. Kuhn The $ \tau $ decay library TAUOLA, version 2.4 CPC 76 (1993) 361
100 N. Davidson et al. Universal interface of TAUOLA technical and physics documentation CPC 183 (2012) 821 1002.0543
101 Z. Czyczula, T. Przedzinski, and Z. W\cas TauSpinner program for studies on spin effect in $ \tau $ production at the LHC EPJC 72 (2012) 1988 1201.0117
102 ATLAS Collaboration Modelling $ \mathrm{Z} \to \tau\tau $ processes in ATLAS with $ \tau $-embedded $ \mathrm{Z} \to \mu\mu $ data JINST 10 (2015) P09018 1506.05623
Compact Muon Solenoid
LHC, CERN